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1 Introduction

Year after year more and more people choose to travel via air. Commercial aviation accounts for over
5% of annual GDP in The United States resulting in the operation of over 26,000 flights both foreign and
domestic, carrying 2.6 million passengers daily (Airlines for America). According to the FAA, commercial
aviation currently generates over 10,000,000 American jobs (FAA). The dataset chosen for this study is
a part of the nycflights13 library in R. This dataset highlights all commercial flights departing from the
three major airports in the vicinity of New York City, John F. Kennedy (JFK), LaGuardia (LGA), and
Newark (EWR), in the calendar year of 2013. The airports highlighted in this study are amongst the
busiest in The United States, JFK ranks 6th at 26.9 million passengers annually, EWR ranks 13th at 21.6
million passengers annually, and LGA ranks 19th at 14.4 million passengers annually (Baran). The library
nycflights13 contains 5 separate tables that are linked together in a relational database schema. For this
project, most all exploratory data analysis and model construction will be conducted using data found in
the flights and weather tables, while other data tables will be referenced to help generate questions and draw
potential conclusions from the exploratory data analysis process. This study aims to explore distributions,
relationships, and employ classification and clustering techniques in regards to flight delay times.

1.1 Background

With the rise in data-driven decision making, big data analytics has taken on a variety of different use
cases in the commercial aviation industry, one of the most popular use cases being flight delay prediction.
More than 20% of commercial flights experience an arrival delay of over 15 minutes, leading to both logistic
and economic challenges for airlines and passengers alike. Previous studies have employed popular machine
learning techniques such as regression, classification, and clustering with the goal of accurately predicting
delay times. “Airline delay prediction by machine learning algorithms” used decision tree, cluster classifi-
cation, and random forest to examine flight delays between US and Iranian airways. The study concluded
that the most significant variables contributing to flight delay times are visibility, wind, and departure time.
“Machine learning approach for flight departure delay prediction and analysis” utilized support vector ma-
chines to investigate patterns of delays at the three major New York airports. The study concluded that the
most influential contributing factors to arrival delay include pushback delay, traffic volume, and weather.
“Machine learning techniques for analysis of Egyptian flight delay” employed a variety of different decision
trees to classify flight delays in Egyptian Airlines flight data. The accuracy of each model was compared
with the highest accuracy percentage for a decision tree built being 83%.



2 The Data

2.1 Source

The data used comes from the R library nycflights13. This library is built upon a database schema as seen
below. The flights table includes every flight from the calender year of 2013 that departed one of New York
Cities three major airports, John F. Kennedy (JFK), LaGuardia (LGA), and Newark (EWR). The flights
table contains flights of over 4,000 commercial aircraft flying to 105 unique destinations both foreign and
domestic. The weather table includes Automated Weather Observation System (AWOS) data by the hour
at each airport.

flights weather
year |e— ——q year
_ month |e— ~—q month
airports
day |e— @ +—= day
— faa
hour |e— N hour
flight ~——q origin
origin |e—
. » dest
tailnum
planes : o
; carrier airlines
tailnum | .
carrier
names

2.2 Variables

The inner_ join() function was use to concatenate the flights and weather table.The data frame constructed
contains 336,776 total observations and 29 variables. Each observation represents a flight departing from
one of the three airports mentioned above.

1) Year: Integer, being nycflights13 all observations are recorded as 2013

2) Month: Integer, 1 signifies January and so on to 12 for December. This will be converted to a factor
as month should be treated as a categorical variable for this analysis

) Day: Integer, day of the month that the recorded flight departed

) Dep_ time: Integer, departure time of flight recorded in 24-hour standard time

) Sched_dep_ time: Integer, scheduled departure time of flight recorded in 24-hour standard time

) Dep__delay: Double precision, difference between scheduled departure time and actual departure time,
positive value signifies a departure delay while a negative value signifies the flight left early

7) Arr_time: Integer, arrival time of flight recorded in 24-hour standard time

8) Sched arr_time: Integer, scheduled arrival time of flight recorded in 24-hour standard time
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) Arr_delay: Double precision, difference between scheduled arrival time and actual arrival time, positive
value signifies an arrival delay while a negative value signifies the flight arrived early

) Carrier: Character, two letter abbreviation for the airline conducting the flight

) Flight: Integer, three or four digit code that signifies the flight number

) Tailnum: Character, the tail number of the aircraft that conducted the flight

) Origin: Character, ICAO code for departure airport

) Dest: Character, ICAO code for arrival airport

) Air_time: Double precision, time in minutes between departure and arrival

) Distance: Double precision, distance between departure and arrival airport in statute miles

) Hour: Double precision, hour of scheduled departure time in 24-hour standard time

) Minute: Double precision, minute of scheduled departure time in 24-hour standard time

) Time_ hour: Date-time, date and hour of scheduled departure

) Made: Integer, amount of time a flight makes up over estimated time in the air. The formula for
deriving “Made” was departure delay - arrival delay. A negative value indicates the flight lost time in
the air, while a positive value indicates the flight made up time

) Temp: Numeric, ambient air temperature in degrees Fahrenheit at time of departure

) Dewp: Numeric, dew point at time of departure

) Humid: Numeric, humidity at time of departure

) Wind_ dir: Integer, wind direction as a heading fix at time of departure

) Wind_ speed: Numeric, wind speed in statute miles per hour at time of departure

) Wind_ gust: Numeric, wind gusts in statute mile per hour at time of departure

) Precip: Numeric, precipitation rate per hour in inches at time of departure

) Pressure: Numeric, ambient air pressure in millibars at time of departure

) Visib: Integer, visibility in statute miles at time of departure

2.3 Observation

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

year month day
"2013" o R
dep_time sched_dep_time dep_delay
n 517" n 515" n 2"
arr_time sched_arr_time arr_delay
" 830" " 819" "o
carrier flight tailnum
"UA" "'1545" "N14228"
origin dest air_time
|IEwRII n IAHH n 227"
distance hour minute
"1400" "5 "15"
time_hour made temp
"2013-01-01 05:00:00" "= " 39.02"
dewp humid wind_dir
"28.04" " 64.43" "260"
wind_speed wind_gust precip
"12.65858" NA "0.00"
pressure visib
"1011.9" "10.00"



3 Exploratory Data Analysis

Number of Flights per Month by Origin
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#t as.factor (month)
## origin 1 2 3 4 5 6 7 8 9 10 11 12

#i# EWR 9893 9107 10420 10531 10592 10175 10475 10359 9550 10104 9707 9922
#i# JFK 9161 8421 9697 9218 9397 9472 10023 9983 8908 9143 8710 9146
#it LGA 7950 7423 8717 8581 8807 8596 8927 8985 9116 9642 8851 9067

Through the bar plot it is evident that their is a increase in number of flight operations in both the summer
months and winter months. The trend of increase and decrease in total operations over the months is
standard across all three airports.



Barplot of Number of Flights by Carrier
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## carrier

## 9E AA AS B6 DL EV F9 FL HA MQ 00 UA Us
## 18460 32729 714 54635 48110 54173 685 3260 342 26397 32 58665 20536
## VX WN YV

## 5162 12275 601

The bar plot above showcases the total number of fights conducted in 2013 by carrier. The top 5 airlines
operating the most flight out of the three major airports in the New York City vicinity are United Airlines
(UA), JetBlue (B6), ExpressJet (EV), Delta (DL), and American (AA). All five of these airlines use either
JFK, or EWR as a hub.



Barplot of Number of Flights by Origin
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## origin

#i# EWR JFK LGA
## 120835 111279 104662

Newark operated the most flights in 2013, with Kennedy and LaGuardia following closely.



Histogram of Flight Distance by Carrier
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The histogram above reveals that the largest concentration of flight destinations fall around 1,000 miles
of New York City. The outlier seen at 5,000 miles is a direct flight operated by Hawaiian Airlines from
Kennedy to Honolulu.



Departure Delay Density by Origin
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## flights$origin: EWR

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

## -25.00 -4.00 -1.00 15.11 15.00 1126.00 3239

## -
## flights$origin: JFK

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

## -43.00 -5.00 -1.00 12.11 10.00 1301.00 1863

# -
## flights$origin: LGA

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

## -33.00 -6.00 -3.00 10.35 7.00 911.00 3153

The departure delay density by origin is fairly similar but it does appear the LGA has the highest density
of flights leaving early and EWR experiencing a greater density of delays. Examining summary statistics we
can see this is true. Newark (EWR) had a mean departure delay time of 15.11 minutes, Kennedy (JFK) had
a mean departure delay time of 12.11 minutes, and LaGuardia (LGA) had a mean departure delay time of
10.35 minutes.
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Origin vs Mean Departure Delay
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As mentioned earlier, their was a difference in mean departure delay times by origin. But, the error bar
plot above confirms that the difference is not statistically significant.

11



Carrier vs Mean Departure Delay Carrier vs Mean Arrival Delay
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Examining each of the lollipop graphs above their are a few initial key takeaways. First, fairly straight
forward and expected, a low average departure delay for a given airline typically leads to a low average
arrival delay. Second, a trend is established between flight distance and time made up in the air. The
airlines with higher mean flight distances also experience a greater makeup of time in the air. This trend
does have an outlier though, Frontier (F9). Despite having one of the longest average flight distances, on
average they lose time in the air. Frontier also experiences the highest average departure and arrival delay.
Contrary to Frontier, Alaska (AS) has the earliest mean arrival times, and the greatest time made up in the
air on average. Like Frontier, Alaska is also in the top 4 airlines for longest mean flight distance. Similar to
Alaska (AS) is Hawaiian (HA). Hawaiian Airlines has one of the lowest average departure and arrival delay
times, with the longest mean flight distance, and second in mean time made up in the air. The relationships
shown in the lollipop graphs tend to signify a strong correlation between distance and time made up in the
air. As well as time made up in the air and arrival delay.
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Scheduled Takeoff Density
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The density plot above highlights the density of departing flights from the three airports. JFK operates
the most international flights of the three airports. This is seen through the density plot with the greatest
density of flights leaving either morning or late evening. EWR operates a more equal balance of domestic
and international flights, so the mid-day dip in departure density is less pronounced. LGA operates mostly
domestic flights, in turn there density plot for departures is much flatter signifying a steadier flow of traffic
throughout the day.
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Mean Departure Delay vs Month
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The line plot for mean departure delay by month is rather telling. It follow the same trend seen above
pertaining to number of flights per month.

14



Visibility vs Mean Departure Delay
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Mean departure delay for each factor of visibility was plot. The overall relationship is rather linear in nature
indicating that as visibility worsens, mean flight departure delay increases my a measurable amount.
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4 Methodology

4.1 Types of Models

Both Logistic Regression and K-Means Clustering were techniques employed in this study. Logistic regression
is a statistical method commonly used for binary classification tasks, where the outcome variable is categorical
with two levels (e.g., yes/no, 0/1). It models the relationship between one or more independent variables
and the probability of the outcome occurring. The logistic regression model applies the logistic function,
also known as the sigmoid function to the linear combination of the independent variables, transforming
the output into a probability between 0 and 1. By setting a threshold or optimal cutoff, logistic regression
classifies observations into one of the two categories.

On the other hand, k-means clustering is an unsupervised machine learning algorithm used for partitioning
a dataset into distinct clusters based on similarity. It aims to group observations into k clusters, where each
observation belongs to the cluster with the nearest centroid. The algorithm iteratively assigns observations
to the nearest centroid and updates the centroids based on the mean of the assigned observations. K-means
clustering works by minimizing the within-cluster sum of squares, seeking to minimize the variance within
clusters and maximize the variance between clusters.

4.2 Data Tranformations

To test the classification accuracy of the logistic model, the data was split into a test and train set using
the standard 70/30 split. A subset of the original data set was comprised of only continuous variables was
created for k-means clustering as it is a distance based algorithm not applicable to categorical variables.

4.3 Model 1 Logistic Regression

A logistic regression model was created to classify observations based on a derived variable of significant
arrival delay. Significant arrival delay, denoted as sig_arr delay is a binary factor with a 1 corresponding
to a flight arriving at its destination greater than 7 minutes late, and a 0 corresponds to a flight being less
than 7 minutes late. The mean arrival delay for all observations is 6.88 minutes, that is why the value of 7
was decided on for the split of the data into a binary factor suitable for logistic regression.

#it

## Call:

## glm(formula = sig_arr_delay ~ air_time + made + dep_time + distance +
## wind_speed + visib, family = "binomial", data = Train)
#i#

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.3508 -0.7088 -0.4184 0.5909 4.2693

##

## Coefficients:

## Estimate Std. Error =z value Pr(>|zl)

## (Intercept) -1.598e+00 3.279e-02 -48.734 < 2e-16 *xx*

## air_time -2.158e-03 5.107e-04  -4.226 2.38e-05 *x*x
## made -8.733e-02 4.919e-04 -177.527 < 2e-16 *x*x
## dep_time 1.452e-03 1.211e-05 119.870 < 2e-16 **x*
## distance 3.277e-04 6.591e-05 4.972 6.63e-07 *%*x*
## wind_speed 1.331e-02 9.899e-04  13.444 < 2e-16 **x*
## visib -1.163e-01 2.733e-03 -42.540 < 2e-16 *x*x*
#it —--
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##
##
##
##
##
##
##
##
##
##

##

##

Signif. codes:

0 ’**xx? 0.001 ’*x> 0.01 %’ 0.06 .7 0.1’ > 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 282961 on 228016 degrees of freedom
Residual deviance: 204546 on 228010 degrees of freedom
(56 observations deleted due to missingness)

AIC: 204560

Number of Fisher Scoring iterations: 5

[1] 0.2771216

(11 0

As previously mentioned the response variable of significant arrival delay was used. All explanatory variables
used are significant with the absolute value of the z-values being greater than 2 and the p-values being less
than 0.05. The explanatory variables used were air time, time made up in the air, departure time, distance,
wind speed, and visibility. The model had a McFadden’s Pseudo R squared of .277 with p-value less than
0.05.

## Setting levels: control = 0, case =1

## Setting direction: controls < cases

##

threshold
## 1 0.3578069

The probability optimal cutoff found for binary classification is 0.3578069.

##
##
##
##
##
##
##

#i#
##
##
##

##
##
##

##

##

##

labels sig
6 1 1
14 0 O
15 1 1
25 0 O
30 0 O
37 0 0
labels 1
0 55185 9599
1 12134 20806
FALSE TRUE
0.2223416 0.7774333

[1] 0.8184465

[1] 0.6860056

[1] 0.22276

Examining the confusion matrix and calculating measures of accuracy, the model sensitivity or true positive
rate was 82% and a specificity or true negative rate was 69%. The total mis-classification error rate was
22%. Resulting in a prediction accuracy of just shy of 80%.
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4.4 Model 2 K-Means Clustering

K-means clustering was utilized in an attempt to group similar observations for pattern recognition of
common characteristics. A subset of the nycflights data was created containing only numerical variables.
This data was then scaled to insure no single feature has a greater influence in distance calculations. In
order to combat computational limitations a wss elbow plot and silhouette plot to find the optimal number
of clusters were created with a subset 25,000 observations. The k-means algorithm then employed all 325,000
observations.

Optimal number of clusters Optimal number of clusters
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70000 - :

0.151 :

2 < :
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Cluster plot

4-

cluster

Dim2 (16.7%)

Dim1 (21.3%)

## [1] 311682.5 254361.0 211602.6

## [1] 777646.1

## [1] 226057.9

## [1] 17445 34949 24815

## cluster dep_time sched_dep_time dep_delay arr_time arr_delay air_time

##H 1 1 1728.1583 1664.4999 49.5615363 1770.018 52.992147 148.6251
## 2 2 1583.0332 1577.2936 4.8835732 1784.105 -3.618387 149.9497
## 3 3 945.0491 955.3652 0.4918396 1174.504 -4.369293 148.4178
## distance made temp wind_dir wind_speed wind_gust visib cluster
## 1 997.7457 -3.430610 47.50902 252.3158  20.79241 30.02147 9.149586 1
## 2 1047.6204 8.501960 62.13778 246.6134  14.35711 22.35741 9.922029 2
## 3 1010.7296 4.861132 45.78576 253.8420 17.28911 25.71672 9.624746 3

Cluster 1 is the smallest by observation numbers, but contains the largest within cluster sum of squares.
The spread out nature of cluster 1 can also be noticed in the plot above. 22.5% of variability in the data
set is accounted for by the variability between clusters, this suggests a lackluster level of distinction between
clusters. Examining the cluster means the only noticeable differences seem to arise in departure time,
scheduled departure time, departure delay, arrival time, arrival delay, and time made up in the air.

## dep_time sched_dep_time dep_delay arr_time arr_delay air_time distance made
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##
##
##
##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##

DO WN -

DO WN -

DO WN

OO WN -

O WN -

DO WN -

DO WN -

35.
42.
48.
91.

30

2400 2359 1 515
2400 2359 1 324
2400 2359 1 338
2400 1950 250 107
2359 2359 0 440
2359 2255 64 123
temp wind_dir wind_speed wind_gust visib cluster
96 300 20.71404 27.61872 10
98 330 13.80936 21.86482 10
02 330 19.56326 25.31716 10
94 270  10.35702 19.56326 10
.02 300 18.41248 24.16638 10
98 260 17.26170 24.16638 10

33.

N = = N S

230
186
196
101
203

34

dep_time sched_dep_time dep_delay arr_time arr_delay air_time

1

e

1

temp wind_dir wind_speed wind_gust visib cluster

32

59
51

.00
33.
33.
39.
.00
.08

98
98
92

260
320

80
300
120
300

2100 181 124
2245 76 121
2128 153 247
2250 71 120
1930 271 106
2359 2 336
21.86482 35.67418 10
16.11092 25.31716 10
18.41248 25.31716 3
17.26170 21.86482 10
12.65858 20.71404 9
29.92028 35.67418 10

Wk, Wk Wwe

179
87
172
75
245
-5

127
56
234
54
36
189

dep_time sched_dep_time dep_delay arr_time arr_delay air_time

62

33.
57.
57.

62

912 1940 812 1228
1020 2100 800 1336
617 1700 797 858
606 1725 761 923
758 1925 753 1049
757 1930 747 1013
temp wind_dir wind_speed wind_gust visib cluster
.06 170 17.26170 25.31716 2.50
98 80 18.41248 25.31716 3.00
02 180 25.31716 33.37262 0.12
02 180 25.31716 33.37262 0.12
.06 170 17.26170 25.31716 2.50
98 360 14.96014 24.16638 10.00

33.

N e

821
784
783
783
744
744

174
335
313
222
149

85

dep_time sched_dep_time dep_delay arr_time arr_delay air_time
1408
2006
2137
2044
1038
2008
temp wind_dir wind_speed wind_gust visib cluster
25.31716 36.82496

51.

80

330

1440
2029
2159
2106
1059
2029

-32
-23
-22
-22
-21
-21

1549
2134
2232
2143
1218
2225

10

20

1

-10
-42
-44
-30
-36

9

52
69
38
40
74
67

1617
1576
1576
733
1617
187

distance
725

273

1626

264

200

1576

distance
1010
2475
2248
1417

950

541

distance
229
419
269
200
479
419

-29
15

33

-23

made

-11
-19

26

made
-9
16
14
-22
9

3

made
=22
19
22

15
-30



## 2 57.92
## 3 30.92
## 4 33.08
## 5 44.06
## 6 69.98

280
300
320
250

20

17.26170
12.65858
11.50780
18.41248
12.65858

28.76950
20.71404
24.16638
23.01560
21.86482

10
10
10
10
10

N W N NN

Arranging some observations we can see that flights with late departure times seem to be assigned to cluster
1 for the most part. Flights with early departure times are assigned to a mixed bag of either cluster 1 or 3,
suggesting the model doesn’t know where to cluster these observations. Flights with the greatest departure
delay are all assigned to cluster 1, and the flights with the smallest departure delay (left early) are assigned
to a mixed number of clusters.

Departure Time v Departure Delay by Cluster
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The plot above further explores the significant variables that contributed towards cluster assignments. Clus-
ter 1 for the most part is assigned to observations with higher values for departure delay. Cluster 2 and
cluster 3 appear to split the observations with less significant delays based of departure time.
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5 Results

5.1 Model 1 Logistic Regression

The logistic regression model built correctly predicted the binary outcome of significant arrival delay 77.7%
of the time. Significant arrival delay was a derived binary factor variable from arrival delay, if a flight arrival
time was more than 7 minutes late the value of true (1) was assigned, less than 7 minutes late the value
of false was assigned (0). The explanatory variables used to build the model were air time, time made up
in the air, departure time, flight distance, wind speed, and visibility. These 6 independent variables were
all significant predictors with p values less than 0.05 and the absolute value of their z values being greater
than 2 signifying statistical significance from zero. The deviance residuals are centered close to zero and the
residual deviance was less than the null deviance indicating the explanatory variables contribute to model
fit. Examining the coefficient estimates, The intercept or the log odds of a flight being delayed is -1.598. For
a one unit increase in air time, the log odds for the flight being delayed decrease 0.00215. For a one unit
increase in time made up in the air, the log odds for the flight being delayed decrease 0.08733. For a one
unit increase in departure time, the log odds of the flight being delayed increases 0.001452. For a one unit
increase in distance, the log odds of the flight being delayed increases 0.000328. For a one unit increase in
wind speed, the log odds of the flight being delayed increases 0.01331. For a one unit increase in visibility,
the log odds of the flight being delayed decrease 0.1163.

5.2 Model 2 K-Means Clustering

The results from the K-Means Clustering model built appear to be less conclusive. This can be attributed to
the lack of variance retained from the original numeric data set in dimensionality reduction. For K-Means,
Principal Component Analysis is used to reduce the input data to two dimensions, making it suitable for
the distance based K-Means algorithm. Dimension 1 accounted for 21.3% of variance in the original data set
and dimension 2 accounted for 16.7% of variance in the original data set, summing to 38%. Three distinct
clusters were formed although these clusters did see vast overlap among outer points and points further from
the cluster centroids. Examining cluster means, cluster 1 averaged the latest departure time in the day for
departing flights, it also featured the highest departure and arrival delay among clusters. While being the
most delayed, cluster 1 did also average a value of -3.4 for time made up in the air, signifying that flights
on average spent 3.4 more minutes in the air than scheduled. Cluster 2 featured a mean value for departure
time, departure delay, and arrival delay between that of cluster 1 and cluster 3. Cluster 2 had the highest
mean value for time made up in the air of 8.5 minutes, denoting that on average flights in cluster 2 spent 8.5
minutes less in the air than predicted. Cluster 3 feature the lowest mean departure time, departure delay,
and arrival delay while the mean time made up in the air fell between that of cluster 1 and 2.

Multiple conclusions can be drawn from the cluster means. First, the later the departure time in the day,
the higher the average departure and arrival delay among flights. Second, flights leaving earliest in the day
arrive earliest in comparison to their scheduled arrival times despite not making up the most time in the air
among clusters. Third, flights departing in the afternoon to late afternoon make up the most time in the air
on average.
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6 Discussion

6.1 Final model interpolation

As mentioned above, both models created give valuable insights in the daily operations of commercial
aircraft. The logistic regression model allows prediction of probability for a binary outcome, then classifying
that observation based on its predicted probability. K-Mean Clustering groups similar observations allowing
for trends and patterns to be recognized. Conclusions were drawn from logistic regression using the log odds
for coefficient estimates and test set to test model accuracy. Conclusions were drawn from K-Mean using
cluster means and cluster assignments for various observations.

6.2 Use of Model

Future use cases for the logistic regression model built to classify significant arrival delay include but are
not limited to, flight scheduling, arrival predictions, traffic management, and operation logistics planning.
The model could be integrated into airport capacity planning systems to optimize resource allocation and
mitigate congestion during peak hours. Furthermore, airlines could utilize the model to enhance customer
service by proactively managing delays and informing passengers about potential disruptions. Additionally,
government agencies responsible for transportation infrastructure could leverage the insights generated by
the model to improve overall system efficiency and reliability. Overall, the versatility of the logistic regression
model extends beyond solely arrival delay classification.

Future use cases for the K-Means Clustering model built include travel patterns, demand forecasting, and
route optimization. For instance, airlines can identify high-demand routes or peak travel times, allowing for
more strategic scheduling and resource allocation. Moreover, k-means clustering enables airlines to segment
their customer base more effectively, tailoring services and marketing efforts to different traveler preferences.
Overall, leveraging logistic regression and k-means clustering in commercial aviation facilitates data-driven
decision-making and offers valuable insights for enhancing operational efficiency and customer satisfaction.
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7 Furture Work

To build more accurate and tailored models deployable to production level standards, more time should
be spent methodically imputing missing values and detecting potential outliers specific to the agency or
corporation utilizing the the various models built. By creating subsets of the data set tailored to specific
airports or airlines, organizations can fine-tune models to fit their unique data characteristics and operational
requirements accurately. This customization enables airports or airlines to extract insights directly applicable
to their operations, optimizing resource allocation, enhancing customer service, and ultimately improving
overall efficiency. By prioritizing data pre-processing techniques and customization efforts, organizations can
develop models that not only meet but exceed production standards, driving meaningful impact within the
aviation industry.
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knitr: :opts_chunk$set (echo = TRUE)
library(nycflights13) #used for data
library(ggplot2) #used for visualizations
library(cluster) #used for k-means
library(factoextra) #used for k-means visualizations
library(ISLR) #used for logtistic glm
library (pROC) #used for calculating optimal cutoff
library(tidyverse) #used for data wrangling
library(tidyr) #used for data wrangling
library(dplyr) #used for data wrangling
library(gridExtra) #used for plot arrangments
data <- read.csv("NYCF.csv")
set.seed(123)
data <- read.csv("NYCF.csv")
transposed_data <- t(data)
transposed_datal,1]
ggplot(data=flights, aes(x=as.factor(month),fill=origin))+
geom_bar () +
theme_bw()+
labs(title="Number of Flights per Month by Origin",x="Month",y="Count",fill="0Origin")
xtabs(~origin+as.factor(month), flights)
ggplot(data=flights, aes(x=fct_infreq(carrier)))+
geom_bar(fill="steelblue",color="black",alpha=0.5)+
theme_bw()+
labs(title="Barplot of Number of Flights by Carrier",x="Carrier",y="Count")
xtabs(~carrier, flights)
ggplot(data=flights, aes(x=fct_infreq(origin)))+
geom_bar(fill="steelblue",color="black",alpha=0.5)+
theme_bw()+
labs(title="Barplot of Number of Flights by Origin",x="Origin",y="Count")
xtabs(~origin, flights)
ggplot(data=flights, aes(x=distance, fill=carrier))+
geom_histogram(binwidth = 200)+
theme_bw()+
labs(title="Histogram of Flight Distance by Carrier",x="Distance",y="Count",fill="Carrier")
flights %>%
ggplot (aes(x=dep_delay, color=origin))+
geom_density(alpha=0.3)+
labs(title="Departure Delay Density by Origin",y="Density",x="Departure Delay",color="0Origin")+
theme_bw()+ x1im(-30,120)
by(flights$dep_delay, flights$origin, summary)
flights %>%
mutate(origin = as.factor(origin))’>%
group_by (origin)%>%
drop_na(dep_delay)%>%
summarise (mean_d=mean(dep_delay),sd_d=sd(dep_delay)) %>/
ggplot (aes(origin,mean_d))+
geom_point (size=5,color="blue", alpha=0.5)+
geom_errorbar (aes(x=origin,
ymin=mean_d - sd_d,
ymax=mean_d + sd_d,
width=0.5),
alpha=0.5, color="black" )+
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labs(title="Origin vs Mean Departure Delay",x="Origin",y="Mean Departure Delay")
flights2 <- flights 7>} drop_na(dep_delay)

pl <- flights %>
group_by (carrier)%>%
drop_na(dep_delay)%>%
summarise (mean_d=mean(dep_delay)) %>%
mutate(carrier=fct_reorder(carrier,mean_d))%>%
ggplot (aes(carrier,mean_d))+
geom_point (size=5,color="orange", alpha=0.5)+
geom_segment (aes (x=carrier,
y=mean(flights2$dep_delay),
xend=carrier,
yend=mean_d),
color="grey")+
geom_hline(yintercept=mean(flights2$dep_delay),
color="grey",
size=1)+
theme_bw()+
theme (axis.text.x=element_text(angle=90))+
labs(y="Mean Departure Delay",x="Carrier",title="Carrier vs Mean Departure Delay")

flights4 <- flights 7>} drop_na(arr_delay)

p2<-flights %>%
group_by(carrier)>%
drop_na(arr_delay)%>%
summarise (mean_d=mean(arr_delay)) %>%
mutate(carrier=fct_reorder(carrier,mean_d))%>%
ggplot (aes(carrier,mean_d))+
geom_point (size=5,color="steelblue", alpha=0.5)+
geom_segment (aes (x=carrier,
y=mean(flights4$arr_delay),
xend=carrier,
yend=mean_d),
color="grey")+
geom_hline(yintercept=mean(flights4$arr_delay),
color="grey",
size=1)+
theme_bw()+
theme (axis.text.x=element_text(angle=90))+
labs(y="Mean Arrival Delay",x="Carrier",title="Carrier vs Mean Arrival Delay")

flights3 <- flights 7>} drop_na(distance)

p3<-flights %>%
group_by(carrier) >’
drop_na(distance)%>%
summarise (mean_d=mean(distance)) %>%
mutate(carrier=fct_reorder(carrier,mean_d))%>%
ggplot (aes(carrier,mean_d))+
geom_point (size=5,color="blue3", alpha=0.5)+
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geom_segment (aes (x=carrier,
y=mean(flights3$distance),
xend=carrier,
yend=mean_d),
color="grey")+
geom_hline(yintercept=mean(flights3$distance),
color="grey",
size=1)+
theme_bw()+
theme (axis.text.x=element_text (angle=90))+
labs(y="Mean Distance",x="Carrier",title="Carrier vs Mean Flight Distance")

flights$made <- flights$dep_delay - flights$arr_delay
flightsb <- flights 7>} drop_na(made)

pa<-flights %>
group_by (carrier)%>%
drop_na(made) %>%
summarise (mean_d=mean(made)) %>%
mutate(carrier=fct_reorder(carrier,mean_d))%>%
ggplot (aes(carrier,mean_d))+
geom_point (size=5,color="red", alpha=0.5)+
geom_segment (aes (x=carrier,
y=mean(flightsb$made) ,
xend=carrier,
yend=mean_d) ,
color="grey")+
geom_hline(yintercept=mean(flights5$made),
color="grey",
size=1)+
theme_bw()+
ylim(-5,20)+
theme (axis.text.x=element_text (angle=90))+
labs(x="Carrier",y="Mean Time Made Up in Air",title="Carrier vs Mean Time Made Up")
grid.arrange(pl, p2, p3, p4, nrow = 2)
par (mfrow=c(1,1))
flights %>%
ggplot (aes(x=sched_dep_time,color=origin))+
geom_density(alpha=0.3)+
labs(title="Scheduled Takeoff Density",x="Scheduled Departure Time",y="Density")+
theme_bw ()
flights %>%
group_by (month) %,>%
drop_na(dep_delay)%>%
summarise (mean_d=mean(dep_delay)) %>%
ggplot(aes(month,mean_d))+
geom_point (size=5,alpha=0.5)+
geom_line(size=1, alpha=0.5, color="blue")+
theme_bw()+
labs(title="Mean Departure Delay vs Month",x="Month",y="Mean Departure Delay")+
y1im(0,25)+
scale_x_continuous (breaks=c(1,2,3,4,5,6,7,8,9,10,11,12))
flightsw<- flights %>’ inner_join(weather)
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flightsw %>%
group_by(visib) %>%
drop_na(wind_speed) %>/
drop_na(dep_delay) %>%
summarise (mean_w=mean(wind_speed) ,mean_d=mean(dep_delay)) %>’
ggplot(aes(visib,mean_d))+
geom_point (size=2,alpha=0.5,color="black")+
geom_smooth(size=1,alpha=0.2,method=1m)+
scale_x_continuous(breaks=c(0,1,2,3,4,5,6,7,8,9,10))+
theme_bw()+
labs(title="Visibility vs Mean Departure Delay",x="Visibilty",y="Mean Departure Delay")
set.seed(123)
data <- read.csv("NYCF.csv")
data$sig_arr_delay <- ifelse(data$arr_delay > 7, "1", "0")
data <- datal[!is.na(data$sig_arr_delay), ]
data$sig_arr_delay <- as.factor(data$sig_arr_delay)
Split <- sample(nrow(data), 0.70*nrow(data), replace=FALSE)
Train <- data[Split,]
Test <- datal[-Split,]
ml <- glm(sig_arr_delay ~ air_time+made+dep_time+distance+wind_speed+visib, data=Train, family ='binomi
summary (m1)
11.null <- mi$null.deviance/-2
11.proposed <- ml$deviance/-2

## McFadden's Pseudo R"2 = [ LL(Null) - LL(Proposed) ] / LL(Null)
(11.null - 11.proposed) / 1l.null

## The p-value for the R"2
1 - pchisq(2*(11l.proposed - 11l.null), df=(length(mi$coefficients)-1))
predictions<-predict(ml, Test, type = 'response')

roc_curve <- roc(Test$sig_arr_delay, predictions)
optimal_cutoff <- coords(roc_curve, "best", ret = "threshold")

print (optimal_cutoff)
labels <- ifelse(predictions> 0.3578069, '1', '0')
labels <- rep(labels, length.out = length(Test$sig_arr_delay))

conf_matrix <- table(labels, Test$sig_arr_delay)

df <- data.frame(labels = labels, sig = Test$sig_arr_delay)
head (df)

conf _matrix

table(labels == Test$sig_arr_delay)/length(Test$sig_arr_delay)
TP <- 55097 # True positives

TN <- 20858 # True negatives

FP <- 9547 # False positives

FN <- 12222 # False negatives

# Calculate sensitivity (true positive rate)
sensitivity <- TP / (TP + FN)
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# Calculate specificity (true negative rate)
specificity <- TN / (TN + FP)

# Calculate misclassification error rate
misclassification_error <- (FP + FN) / sum(conf_matrix)

sensitivity
specificity
misclassification_error
par (mfrow=c(2,2))
numeric_datal <- data %>’ slice(1:25000) %>%

select_if (is.numeric)
numeric_datal <- numeric_datall[,c("dep_time","sched_dep_time","dep_delay","arr_time","arr_delay","air_t
numeric_datal <- na.omit(numeric_datal)
numeric_data <- numeric_datal[, !'names(numeric_datal) %in), "precip"]
numeric_data <- numeric_datal[, !names(numeric_data) %in} "year"]
numeric_data <- scale(numeric_data)
pl<-fviz_nbclust(numeric_data, kmeans, method = "wss", k.max = 8)
p2<-fviz_nbclust (numeric_data, kmeans, method = "silhouette", k.max = 8)
grid.arrange(pl, p2, nrow = 1)
set.seed(123)
par (mfrow=c(1,1))
numeric_datal <- data %>% select_if(is.numeric)
numeric_datal <- numeric_datall[,c("dep_time","sched_dep_time","dep_delay","arr_time","arr_delay","air_t
numeric_datal <- na.omit(numeric_datal)
numeric_data <- numeric_datal[, !'names(numeric_datal) %in), "precip"]
numeric_data <- numeric_datal[, !names(numeric_data) %in} "year"]
numeric_data <- scale(numeric_data)

k3 <- kmeans(numeric_data, centers = 3, nstart = 1, iter.max = 10)
fviz_cluster(k3, data= numeric_data)

k3$withinss

k3$tot.withinss

k3$betweenss

k3$size

numeric_datal$cluster <- k3$cluster

aggregate (numeric_datal, by=list(cluster=numeric_datal$cluster), mean)
f <- arrange(numeric_datal, desc(dep_time))

a <- arrange(numeric_datal, dep_time)

head (f)

head(a)

f2 <- arrange(numeric_datal, desc(dep_delay))

a2 <- arrange(numeric_datal, dep_delay)

head (£2)

head(a2)

ggplot (numeric_datal, aes(x=dep_time,y=dep_delay, color=as.factor(cluster)))+geom_point(alpha=0.5, size:
labs(title="Departure Time v Departure Delay by Cluster",y="Departure Delay",x="Departure Time",color
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